Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(11): e2304666, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37933711

RESUMO

The integration of motile cells into biohybrid microrobots offers unique properties such as sensitive responses to external stimuli, resilience, and intrinsic energy supply. Here, biohybrid cell-cargo systems that are driven by amoeboid Dictyostelium discoideum cells are studied and how the cargo speed and the resulting viscous drag force scales with increasing radius of the spherical cargo particle are explored. Using a simplified geometrical model of the cell-cargo interaction, the findings toward larger cargo sizes, which are not accessible with the experimental setup, are extrapolated and a maximal cargo size is predicted beyond which active cell-driven movements will stall. The active forces exerted by the cells to move a cargo show mechanoresponsive adaptation and increase dramatically when challenged by an external pulling force, a mechanism that may become relevant when navigating cargo through complex heterogeneous environments.


Assuntos
Dictyostelium , Fenômenos Biofísicos , Movimento , Viscosidade
2.
PLoS Comput Biol ; 17(8): e1009268, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424898

RESUMO

Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.


Assuntos
Dictyostelium/fisiologia , Modelos Biológicos , Movimento , Fenômenos Biofísicos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...